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Table 3. Observed and calculated temperature factors of NaCl 

(Standard deviations are given in parentheses) 

Temperature (°K) BN~ (A z) B<l (/~2) 
4.2 Experiment 0.35 (0.08) 0.27 (0.04) 

Reid & Smith 0"40 0-30 
295 Experirnent-TDS corr. 1"70 (0.10) 1.44 (0"03) 

Reid & Smith 1.56 i.35 

Table 4. Potential parameters for NaCI and KCI 

NaCI KCI 
7/~t 2 -0"11 . 101" erg -1 -0"14 . 1012 erg -1 
ct 2-25 . 10 -12 erg /~-2 1"64 . 10 -lz erg A -z 
7 -0"56 . 10 -12 erg A -4 -0-38 . 10 -12 erg A -4 
7* -0"99 . 10 -12 erg ]k -4 --0"215 . 10 -12 erg ,~-4 

* Taken from Viswamitra & Jayalakshmi (1972). 

Discussion 

The observed B factors at 4.2:~'K are in approximate agree- 
ment with the theoretical values of Reid & Smith; on the 
other hand, at room temperature the observed values are 
higher than those given by the calculations but in better 
agreement with recent X-ray determinations (Table I). 
Linkoaho (1969) has suggested that the discrepancy between 
observed and calculated B values is due to the difficulty in 
making a reliable correction for thermal diffuse scattering 
(the correction increases the values of the observed B 
factors). A further possibility is that the discrepancy be- 
tween experimental and calculated B values stems from the 
neglect of anharmonicity in the lattice dynamical calcula- 
tions. Third-order and fourth-order anharmonic terms are 
ignored in the theory, although experimental evidence for a 
fourth-order (quartic) term in the Debye-Waller factors of 
both NaCI (Butt & S61t, 1971) and KCI (S61t, Butt & 
O'Connor,  1973) has been obtained by using M6ssbauer 
7-ray diffraction. 

If we examine the present results in the light of the an- 
harmonic treatment of Willis (1969), the quartic anhar- 
monic coefficient in the potential expansion 

V= V o + ~ r  2+yr 4 

[Willis, 1969, equation (4.8)] is as given in Table 4. The 
Table also includes corresponding values for KCI deduced 
by Willis (1969) and the anharmonic parameters for NaCI 
and KCI obtained by Viswamitra & Jayalakshmi (1972) 
from single-crystal X-ray diffraction measurements close 
to the melting points. 
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A discussion of how the inter atomic thermal coupling is expressed in the anisotropic temperature factors 
was given in a preceding paper. Here a further aspect of this question is treated. 

In a preceding paper (Scheringer, 1972) we discussed how 
the interatomic thermal coupling is expressed in the ani- 
sotropic temperature factors although these factors do not 
contain explicit coupling terms. We gave a lattice-dynamical 
formulation of the anisotropic temperature factors which 
showed that the mean-square amplitude matrix of the 
atoms of the unit cell is proportional to the sum of the 
inverse dynamical matrices of the crystal. On inversion of 

* Present address: Fritz-Haber-lnstitut der Max-Pianck- 
Gesellschaft, I Berlin 33, Faradayweg 4-6, Germany. 

the dynamical matrices, the information which is contained 
in the off-diagonal blocks of these matrices is transferred 
into the diagonal blocks of the mean-square amplitude 
matrix. In the quoted paper, however, we did not take into 
account the fact that information on the interatomic coup- 
ling is also transferred into the mean-square amplitude 
matrix from the so-called 'self terms', which occur in the 
diagonal blocks of the dynamical matrices. The self terms 
also contain information on the interatomic interactions, 
and it is the purpose of this note to show how the self 
terms contribute to the anisotropic temperature factors. 

The elements of the dynamical matrix of wave vector q 
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are given by 

L,k(q, r r ' ) =  ~ ~tk(lr, l ' r ' ) exp  {-- iq.  [X ( l r ) - X ( l ' r ' ) ] } ,  (1) 
1' 

cf. e.g. Cochran & Cowley (1967). l,l" denote the cells in 
the crystal; r,r '  the atoms in the cell; and i, k =  1, 2, 3 the 
directions of space. X(/r) is the position vector of the atom 
lr in the crystal. ~k(lr,  l ' r ' )  are the interatomic force con- 
stants. They describe the force which is exerted on the atom 
lr in the direction i when the atom l 'r" is displaced by unit 
length in the direction k. Since the interatomic forces im- 
ply 'interactions' among the atoms we regard non-zero 
values of the force constants as expressing interactions be- 
tween the two respective atoms. The 3 × 3 diagonal blocks 
of the dynamical matrices represent the elements for the 
case r ' = r .  The force constants in these elements usually 
refer to the cases l '  ¢: l, i.e. to interactions of different atoms 
within a Bravais array. However, once a term arises in the 
sum of equation (1) for which / ' =  l then this is called the 
'self term'. The constant ~o~(lr, lr) describes the force which 
the atom lr exerts on itself in the direction i when it is dis- 
placed by unit length in the direction k. This force is estab- 
lished by the fact that, in the crystal at rest, all atoms l 'r" 
exert counter forces on the atom Ir when this is displaced 
in the crystal. Hence the expression for the self terms can 
be derived from the condition of translation invariance of 
the crystal. According to Martin (1971) we obtain 

½[tp,g(/r, Ir) + q~k,(lr, lr)] = -- ~'~o,g(lr, l" r ' )  . (2) 
l" r '  

The summation contains only terms with l ' r ' ¢ l r .  Ob- 
viously the left-hand side of equation (2) is symmetric in 
i and k and hence the right-hand side must also be sym- 
metric. When the self terms are calculated from equation 
(2) only those constants ~k(/r,/r) are physically acceptable 
which are symmetric in i and k. This guarantees that the 
dynamical matrices are hermitian. Since in equation (2) 
the sum is taken over all interactions with indices l 'r" the 
self terms tpik(/r,/r) can be regarded as representing inter- 
actions of the atom lr with all other atoms in the crystal. 

Now, how much weight do the self terms have in the 
elements of the dynamical matrices? In order to see this 
we write down the diagonal elements of the dynamical 
matrices, insert equation (2) into equation (1) and thus ob- 
tain 

L,~(q, rr) = ~"  ~O,k(lr, l ' r)  {exp (-- iq .  [X(lr) 
1' 

-X(/'r)])- 1}- ~ ~ ~,k(lr, l 'r ') .  (3) 
r ' ~ r  l '  

The first sum in equation (3) arises from the self term and 
the other terms for which 1'~,I, whereas the second sum is 
due only to the self term. The role of the self term in equa- 
tion (3) depends on the magnitude Iql = q of the wave vec- 
tor and on the dimensions of the unit cell. For small values 
of q the exponential factor is nearly unity and thus the first 
sum nearly vanishes so that the diagonal blocks L~k(q, rr) 
are almost exclusively determined by the self terms. The 
magnitude of the unit cell enters into equation (3) in the 
following way. The terms in the first sum refer only to 
interactions of atoms which belong to the same Bravais 
array. The magnitudes of the interatomic force constants 
decrease with increasing distance between the respective 
atoms; hence the terms in the first sum of equation (3) 
decrease with growing cell dimensions. The second sum 
of equation (3), on the other hand, contains terms which 
refer to interactions of different atoms within one unit cell. 
Large cells contain many atoms and thus there will be 
several terms with larger magnitudes of the force con- 
stants. Thus for long waves and large unit cells the second 
sum in equation (3), which arises only from the self term, 
will govern the diagonal blocks of the dynamical matrices. 
The influence of the self terms on the atomic vibration 
tensors follows from the fact that the diagonal elements of 
the dynamical matrices play an important part in the cal- 
culation of the elements of the inverse dynamical matrices 
and thus, with equations (10) and (15) of Scheringer (1972), 
contribute to the atomic vibration tensors in the corre- 
sponding manner. 

We conclude that the interatomic thermal coupling en- 
ters into the atomic vibration tensors in two ways. On the 
one hand, the interactions, which are expressed in the off- 
diagonal elements of the dynamical matrices, are trans- 
ferred into the diagonal blocks of the inverse dynamical 
matrices by the mechanism of the matrix inversion; on the 
other hand, the interactions, which are expressed by the 
self terms and are contained in the diagonal blocks of the 
dynamical matrices, are also transferred into the diagonal 
blocks of the inverse dynamical matrices. 
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